
Tabs.do: Task-Centric Browser Tab Management

JOSEPH CHEE CHANG, Carnegie Mellon University, USA

YONGSUNG KIM, Carnegie Mellon University, USA

VICTOR MILLER, Carnegie Mellon University, USA

MICHAEL XIEYANG LIU, Carnegie Mellon University, USA

BRAD A. MYERS, Carnegie Mellon University, USA

ANIKET KITTUR, Carnegie Mellon University, USA

Despite the increasing complexity and scale of people’s online activities,
browser interfaces have stayed largely the same since tabs were introduced
in major browsers nearly 20 years ago. The gap between simple tab-based
browser interfaces and the complexity of users’ tasks can lead to serious ad-
verse effects – commonly referred to as “tab overload.” This paper introduces
a Chrome extension called Tabs.do, which explores bringing a task-centric
approach to the browser, helping users to group their tabs into tasks and
then organize, prioritize, and switch between those tasks fluidly. To lower
the cost of importing, Tabs.do uses machine learning to make intelligent
suggestions for grouping users’ open tabs into task bundles by exploiting
behavioral and semantic features. We conducted a field deployment study
where participants used Tabs.do with their real-life tasks in the wild, and
showed that Tabs.do can decrease tab clutter, enabled users to create rich
task structures with lightweight interactions, and allowed participants to
context-switch among tasks more efficiently.

CCS Concepts: • Information systems→ Browsers; •Human-centered
computing → Graphical user interfaces;Web-based interaction.

Additional Key Words and Phrases: browser tab management, task manage-
ment, to-dos, bookmarking, sensemaking, exploratory search, tab overload

ACM Reference Format:

Joseph Chee Chang, Yongsung Kim, Victor Miller, Michael Xieyang Liu,
Brad A. Myers, and Aniket Kittur. 2021. Tabs.do: Task-Centric Browser Tab
Management. In The 34th Annual ACM Symposium on User Interface Software
and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3472749.3474777

1 INTRODUCTION
Despite our browsers being responsible for how we accomplish an
increasingly significant proportion of the tasks in our professional
and personal lives [13, 20], browser interfaces for managing those
tasks have changed little in the past 20 years since tabbed browsing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474777

was popularized [13]. Today’s internet users interact with a dramat-
ically different web than that of two decades ago which has grown
tremendously in size and complexity [40]. The amount of time the
average internet user spends online has also grown: when tabs were
introduced to the Mozilla browser in 2002, people spent on average
7 hours online per week;1 that number is now approaching 7 hours
per day.2

The mismatch between the growing size and usage of the internet
with relatively static web browser interfaces suggests the possibility
that the original tabbed browsing paradigm may no longer be suffi-
cient for today’s complex online tasks. There is mounting evidence
for this, including dozens of popular press articles characterizing
issues such as “Tab Overload” or “Tab Hoarding” [26–28, 41, 44, 45]
as well the rise of bookmarking tools, such as Pocket (over 1 billion
pieces of content saved) and Pinterest (over 450 million users), and
tab management tools such as OneTab or SessionBuddy (over 1
million users each [21, 23]) aiming to reduce the number of open
tabs users have open. Some browsers such as Chrome and Firefox
have introduced or are experimenting with enabling users to com-
bine several tabs into a single group to help with tab overload. The
general approach taken by the above tools is to save tabs and close
them, either individually, as groups, or as whole sessions, putting
them out of sight, enabling users to free their attention and reduce
clutter while being able to (in theory, at least) reload those tabs later.

However, a recent study interviewing information professionals
and surveying a wider audience, many of whom tried using solu-
tions such as the above, points to more fundamental problems with
tabbed browsing that raises concerns about the above approaches
[13]. Specifically, [13] noted that browser tabs are often used for a
variety of task management functions that they were not necessarily
designed for, ranging from reminding to prioritization, but function
suboptimally for doing so. For example, users keep tabs open so
they can resume progress on their tasks but cannot easily switch
focus between sets of tabs for their different tasks; as reminders
that quickly lose reminding value as they pile up; as reading lists
of items that are never actually read and result in clutter; and as
manifestations of their mental models that are artificially forced

1https://theharrispoll.com/wp-content/uploads/2017/12/HI-Harris-Poll-Time-Spent-
Online-2009-12-23.pdf
2https://datareportal.com/library

1

https://doi.org/10.1145/3472749.3474777
https://doi.org/10.1145/3472749.3474777
https://theharrispoll.com/wp-content/uploads/2017/12/HI-Harris-Poll-Time-Spent-Online-2009-12-23.pdf
https://theharrispoll.com/wp-content/uploads/2017/12/HI-Harris-Poll-Time-Spent-Online-2009-12-23.pdf
https://datareportal.com/library


UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

Fig. 1. The main interface of Tabs.do that replaces the new tab page after installation. [A] The Main Menu for switching among projects and views that filter
tasks with different priorities across projects. For example, [H] the Today View lists tabs that are due today. [B] The Open Tabs View allows users to import
their tabs into Tabs.do via dragging and dropping into project labels in [A] or the current project [C]. [C] The Project View contains a list of tabs and tab
bundles saved by the user. [D] Open tabs are automatically grouped by a deep learning model so that users can more easily import them as tab bundles and
close them by clicking [E] to remove tab clutter. [F] Users can create hierarchical structures for their saved tabs to reflect their mental models; or [G] create a
manual task similar to general task management applications.

into a simple, temporal and linear list [13]. This suggests a divide
between current browser designs that treat browser tabs as stacks
of individual webpages and users who see bundles of tabs as their
current and future tasks [13].

As a result, many attempts to address issues with tabbed browsing
by addressing the surface level problem of closing tabs run the risk
of conflicting with tabs’ implicit task management functions. For
example, bookmarking and closing tabs results in a lack of remind-
ing and resurfacing functionality that users describe as leading to
a “black hole” effect in which closed tabs are unlikely to ever be
encountered again [13]. Other issues result from approaches such as
tab groups, which may serve as a temporary stopgap but can result
in overload as their numbers grow. More sophisticated approaches
allow users to create workspaces of tabs that they can suspend and
resume, such as in the Toby or Workona tab managers [22, 24].
However, while these workspaces can work well for relatively static
tasks, users noted the challenges of manually creating andmanaging

static workspaces for complex online tasks that involved collecting
and organizing information that were constantly changing in prior-
ity or relevance. They also noted the challenges with evolving tasks
that were too small, ephemeral, or undeveloped to merit their own
workspace, but were still important to manage and keep track of.

In this paper we introduce and explore the idea of a task-centric
approach to managing browser tabs that bridges the gap between
managing individual browser tabs and managing users’ online tasks
and subtasks. Task-centric approaches have been shown to work
well for domains such as file systems, application windows and
email [2, 3, 7, 31, 54], suggesting there may be a profitable design
space to be explored for browsing as well. However, while browsing,
users are often exploring and sampling items from a nearly infinite
space for a myriad of purposes, leading to tasks that are often more
ad hoc, uncertain, and ephemeral than the traditional projects and
desktop applications that prior systems have targeted [13, 38]. To
investigate these challenges, we instantiate a task-centric tabbed

2



Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

browsing approach in a prototype browser extension, Tabs.do, and
evaluate its effectiveness in a field deployment (Figure 1). The basic
intuition behind Tabs.do is that tabs can be “bundled” together
and treated as tasks, with the system providing task management
functionality such as reminding, prioritization, complex structure,
task switching, and support for tasks both early and late in maturity.
To further lower the friction of importing open tabs into the system,
Tabs.do uses machine learning to make predictions about which
open tabs correspond to the same tasks by exploiting behavioral
and semantic features, allowing users to drag and drop groups of
tabs into the system to create pre-labeled, bundled tasks. To protect
users’ privacy, the task prediction model runs locally inside users’
browsers, so that Tabs.do does not transmit information about users’
open tabs before they explicitly save their tabs into our system.

After several months of internal usage and iteration by the research
team, we conducted a field deployment studywith participants using
Tabs.do with their real-life tasks and tabs. Based on interviews and
log data, we found evidence that Tabs.do allowed participants to
create rich task structures from their tabs with lowered interaction
costs, to keep fewer tabs and be more focused on their important
tasks but also context-switch among tasks efficiently when needed.

The contributions of this paper include:

(1) Exploring the idea of a task-centric approach to tabbed web
browsing that aims to support the ad hoc and exploratory as-
pect of web browsing in addition to more stable collections of
documents and resources.

(2) A prototype browser extension, Tabs.do, instantiating this ap-
proach through supporting a set of task-management affor-
dances that help users manage a variety of browsing tasks.
Our system enables users to create complex task structures
by grouping and nesting tabs, allows them to fluidly suspend
and relaunch tasks to reduce tab clutter, reduces friction through
automatic task suggestions, and helps users manage attention
through task prioritization, scheduling, and a variety of task
types and statuses.

(3) A field deployment studywith participants showing that Tabs.Do
changed the way they interacted with their browser tabs on
their own real-world tasks, helping them reduce tab clutter and
increase focus.

2 RELATED WORK

2.1 Tabbed Web Browsing
Tabbed web browsing behavior was extensively studied when major
browsers started to support tabbed interfaces [11, 20, 51, 56, 57]. This
early work focused on the gradual user adoption of tabbed brows-
ing and its benefits over using only browser windows. For example,
researchers observed that the use of the back button decreased from
40% in the mid-90s to 7% in the mid-2010s when browsers that
supported tabbed browsing reached 50% combined market share
[55]. This suggested users preferred opening links using tabs and
switching among them instead of loading multiple webpages us-
ing the same tab [33]. More closely related to our work, Huang
et al. [34] estimated that 60% of users’ browser tabs are related to

at least one other tab of the same task. Our work builds on this
observation that users often open multiple tabs to support the same
task, and provides mechanisms for users to group them together as
task bundles. More recently, Bento Browser [29] explored a search-
centric mobile browser that scaffolds users search tasks by treating
all search results as opened or unopened tabs. In the current work,
we also exploit users’ search activities to scaffold their task struc-
tures. However, instead of forcing tabs opened from a search results
to be grouped together, Tabs.do uses a machine learning model
that considers search activities and other behavioral and semantic
features at the same time to produce tab grouping suggestions. This
allows Tabs.do to produce grouping suggestions for tabs not opened
from search results, and allows users to make adjustments to the
grouping suggestions to better fit their mental models and correct
mistakes made by the model. Most directly related to this current
work is a recent interview and survey study that investigated tab
management issues users face today [13]. At a high level, one of the
main observations was that users need support managing their tabs
based on the tasks they were conducting [13]. In the current work,
we explore taking a task-centric approach to tab management by
allowing users to group their tabs and save them into the system as
tab bundles. The system, in turn, provides affordances to manage
them as tasks. For example, users can also group their tabs into tasks
and subtasks to better reflect their mental models, context-switch
between their tasks or subtasks more efficiently.

2.2 Task Management
The idea of assisting users in better managing their attention by
grouping related applications, files, and contacts by task contexts
has been extensively explored in the activity-based computing liter-
ature [4, 5]. Early systems focused on building workspaces for the
desktop environment [2, 3, 31, 54], for example allowing users to
group application windows by different virtual desktops and switch
among them [31], organize files and application shortcuts in a 3D
desktop environment [3], or create integrated workspaces by group-
ing application windows, files, and contacts for knowledge work
[54]. In the current work, we build on ideas from prior research in
activity-based computing, but focus on the important yet relatively
unexplored context of managing browser tabs and its unique re-
search challenges. Specifically, tasks in the browser are often more
ad hoc, uncertain, and ephemeral than the traditional projects and
desktop applications that prior systems have targeted [13, 38], re-
flecting that users are exploring and sampling items from a nearly
infinite space for a myriad of purposes in addition to keeping track
of a finite set of their own documents. This fundamental difference
introduces challenges such as allowing for fluid task structures that
can support externalizing small tasks of uncertain importance that
can later become full-fledged projects once explored more deeply
[38], prioritizing and reminding users of their previously suspended
tasks to avoid a black hole effect often associated with bookmark-
ing [13], and de-prioritizing low importance tasks to avoid clutter
while coping with users’ aspiration to collect and process too much
information [13].

3



UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

Closely related to our work, another thread of research in the early
2000s explored how emails often represented users’ tasks and ex-
plored how providing task management affordances in email clients
can benefit users [7] – for example, prioritizing and scheduling dead-
lines for individual emails or grouping multiple messages, threads,
and attachments into larger tasks. Since email tasks are by nature
collaborative (i.e., receiving and delegating work with others), many
prior systems focused on deadline management, communication,
and coordination with others in business settings. In this current
work, we also assume that tabs are often seen as tasks by users in
both personal and professional scenarios and explore a task-centric
approach to managing them. While there is also prior work that
looked at the real-time collaboration of web browsing (i.e., collab-
orative search), in this work, we focus on managing browser tabs
in a single-user scenario and see collaboration as potential future
work. Fundamentally, as the browser has increasingly become the
primary “habitat” [7, 58] of our digital tasks as desktop applications
and communication channels continue to migrate to web-based
platforms [20], it is crucial for research to understand better ways
to support task management in the browser environment.

3 DESIGN GOALS AND MOTIVATIONS
When developing our design goals, we look to a recent interview and
survey study on modern tab browsing behavior that focused on the
issues that users face when managing their online activities using
browser tabs [13]. The study provided deep qualitative insights
based on interviewing ten researchers four times each over two
weeks to sample their open tabs on their work computers, combined
with survey data from another 103 participants. That study outlined
a set of issues preventing users from closing their tabs, causing
serious adverse effects, and developed a set of design implications
for future browser interfaces. Here, we summarize three core issues
and implications from this prior work [13] that were the primary
motivations when designing our system:

Firstly, [13] found participants often saw browser tabs as external
mental models of their online tasks, but the simple linear structure
of tabs often insufficient for capturing their complex task structures
with tasks, subtasks, and notes from reading the webpages. This
led users to resort to solutions incurring high interaction and com-
puting costs; for example, some participants simulated hierarchies
using multiple browser windows, multiple browser applications,
or multiple computers. Others used external tools such as word
processors or spreadsheets to keep track of their tasks by copying
and pasting URLs.

Secondly, [13] pointed to how users manage their attention at the
task level, yet the current browser design makes it costly for users
to context-switch between sets of tabs supporting their different
tasks. While built-in features such as Chrome’s tab groups and tab
management extensions such as Workona support creating task
contexts from multiple tabs, the initial manual cost of grouping tabs
to create them can be prohibitively high. Specifically, when creating
a new task context, users would still need to go through each of their
open tabs to gather ones that are relevant to avoid losing important
tabs.

Thirdly, [13] found participants had tabs that corresponded to tasks
of varying importance, ranging from urgent and important tasks
to casual readings that they may never get to but nonetheless did
not want to put out of sight for fear of never re-encountering them.
However, browser tabs have the same visual saliency (i.e., the same
tab-width) and are ordered by default by creation time in a simple
list, making it difficult for users to prioritize their tabs and focus
their attention on important tasks.

Motivated by the three core issues summarized above, we list our
core design goals as follows:

• [D1] Allow users to group tabs into task bundles and context-
switch at the task level.

• [D2] Allow users to create rich and fluid structures that better
reflect their evolving task mental models.

• [D3] Allow users to prioritize and de-prioritize their tabs so
they can focus on their important tasks.

4 SYSTEM DESIGN

4.1 Fundamental Primitives and Design Approach
The fundamental primitive that Tabs.do introduces to support the
above design goals is the tab bundle. A tab bundle can hold zero or
more tabs and zero or more tab bundles, which can be nested to
an arbitrary level of depth via drag and drop (Figure 2). If empty,
a tab bundle consists only of a text title, which essentially acts as
a to-do item as found in a typical to-do manager (Figure 2 C). Tab
bundles have a variety of task functionality as described below.
When containing one tab, the bundle is displayed and acts like a
single tab (Figure 2 D), though it supports the same set of task
functionality as when it is shown as a to-do. However, a tab bundle
becomes particularly useful when it contains multiple tabs (Figure 2
E), at which point the entire bundle can be treated as a single task,
and can be assigned a priority, scheduled (Figure 4), moved into a
project (Figure 1), or otherwise managed as a task. Furthermore,
tab bundles can be nested in other tab bundles to an arbitrary level
(Figure 2), supporting complex task and subtask structures.

There are several common user patterns Tabs.do supports for trans-
forming tabs into tasks and managing them using tab bundles. One
approach is post-hoc task management, in which a user has already
started a task through a search query and may have several tabs
opened from that query or related pages. In this case a user can
open the Tabs.do interface by opening a new tab page (see Figure 1),
selecting the tabs they wish to bundle from the “Open tabs” pane
(which can be auto-suggested by the system, as described below),
and dragging them into another pane. At this point the system will
create a bundle for them named using the terms of the search query
it originated from if available (shown in previous work to be an
effective heuristic for initial naming of search-based tasks [29]), or
else the title of the first tab in the bundle. The user can then close
the related tabs, while managing the task through the bundle’s task
functionality or resuming the bundled task when they wish.

Another common approach discussed in the literature is a priori task
management, in which a user creates a placeholder for a task that

4



Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

Fig. 2. Users create and organize their tabs via drag and drop into their projects. They could create hierarchy from previously saved tabs or new tabs by
dragging to a specific location in their task hierarchy from their open tab list in [A]. [A] A User drags a tab grouping suggestion from the Open Tabs view into
a specific location [B] in the task hierarchy. When dragging, the light green background indicates the selected tabs that are being dragged [A] and area in the
main view where they can be dropped [B]. This creates a new tab bundle nested under a previously created tab bundle [E].

they wish to complete later, potentially scaffolding that placeholder
with multiple subtasks (e.g., creating a task for a trip to Barcelona,
along with subtasks for restaurants, shopping, sights, and trans-
portation). This approach is typical of standard to-do lists, in which
users queue up the tasks they need to work on and use the list as a
reminder [6]. In this case a user can add a manual task to the system
(Figure 1 G) , and give it a title in the same way as they would a to-do
and can similarly serve as a reminder and be scheduled, prioritized,
etc. (By default, Tabs.do also adds a circle to the left of each item
modeled after typical to-do list systems, which the user can use to
check off and complete the item, or change it into another item type
as described later.) When the user decides to work on the task they
can add any relevant tabs under the to-do item by dragging them
into it.

Finally, a user can simply add a single tab (technically, a degenerate
tab bundle containing only one tab) by dragging it out of the “Open
tabs” pane, at which point it appears as an item representing that
tab, including the title and the favicon (or tab icon) of that tab, but
supporting the same functionality as any other tab bundle.

Below, we describe the ways in which the core tab bundle primitive
can be combined with various task-based functionality to support
users’ complex online task management needs. To ground this dis-
cussion we first describe it in the context of an example user expe-
rience, and then unpack details of the various system features and
how they address the design goals above.

4.2 Example User Experience
Consider a university student who has been considering taking a
vacation somewhere in Europe. She casually searches on Google
for “things to do in Spain’, and opens a few webpages in tabs. It
quickly becomes apparent that she is most interested in two cities
– Barcelona and Madrid. She starts to wonder about their lodging

choices, so she creates two new searches for “Hotels in Barcelona”
and “Hotels in Madrid” and opens a few hotel websites from each
search results page. At this point, she has accumulated more than
15 tabs from the three searches and from opening more links into
tabs as she read some of the webpages, and what started as a casual
exploration to pass the time has quickly grown into a more intensive
research session. She feels overwhelmed by her open tabs, and
cannot easily switch focus between her tabs for researching hotels
in the two cities and her tabs for researching things to do in Spain.

She opens Tabs.do and finds all her open tabs automatically grouped
into three task bundle suggestions in the Open Tabs panel (Figure 1
B, D). To start a new workspace for them, she creates a new project
in Tabs.do titled “Vacation in Spain.” To save her open tabs in an
organized way, she drags each of the automatic tab groups and drops
them into the Project View to create three task bundles (Figure 1
C). Tabs.do automatically assigned the search terms as titles of the
three task bundles. To further organize her tasks, she creates an
empty task bundle titled “Places to Stay” and nests her two hotel
task bundles under it (Figure 1 C). She then creates other empty
task bundles titled “Restaurants in Madrid” and “Restaurants in
Barcelona” nesting them under “Places to Eat” via drag and drop
(Figure 2) as reminders for what she needs to research next. To
continue her research, she closes all her tabs for researching hotels
with three clicks in the Open Tabs view to first select the two tab
bundles for “Hotels in Barcelona” and “Hotels in Madrid” and use
the “Close Selected Tabs” button to close them (Figure 1 E). Now all
her open tabs are about things to do in Spain again, she switches her
focus back her initial subtask.

As she continues to read from the webpages, she opens Tabs.do’s
PopupMenu to save notes from the webpage she is reading (Figure 3
B).When she returns to her project in Tabs.do (Figure 1 C, F), she can
see an overview of all the notes she took on the individual tabs. After

5



UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

Fig. 3. User can also access Tabs.do while they process information on the
current tab using the Popup View via the extension button and without
switching to the full interface (Figure 1). [A] If the current tab was previously
saved, a "saved" badge will appear whenever user switches to this tab.
Previously saved notes [B] and attributes, such as project [C] and priorities
[D] are also reflected. the popup view allows users quick access to their
notes about the page, allowing them to accumulate notes as they read from
the individual tabs.

a while, she notices in Tabs.do that there is a task bundle for a class
assignment due today (Figure 1 H). She decides she should work on
her assignment, so she closes all her tabs for Spain vacation research,
feeling confident knowing that she can resume her research progress
any time by reopening her task bundles into tabs from Tabs.do,
and all her notes and scroll positions will be restored. Finally, she
navigates to a Tabs.do project she had previously created for the
class and reopens its task bundles back into open tabs (Figure 4 F),
including presentation slides, her notes on Google Docs, and the link
to the homework instructions to start working on her homework.

4.3 [D1] Task-Centric Context-Switching
As reflected in the example above, users often manage their at-
tention at the task level and need support when switching focus
between sets of tabs supporting their different tasks and subtasks –
for example, switching from one set of tabs about hotels in Barcelona
to another set about hotels in Madrid. Tabs.do supports this by al-
lowing users to group tabs and save them as a tab bundle. To do so,
users can click and select a set of open tabs listed in the Open Tabs
pane (Figure 1 B) and use drag and drop to save them into a default
holding area, a project they had previously created (detailed below),

Fig. 4. Tabs.do provides a set of affordances for prioritizing tab bundles.
[A] Users can categorize tabs as References, To-dos, To-reads, Completed,
or Deleted, which sorts it into different sections in their projects; [B] The
edit button bring up an Edit View (identical to the Popup view in Figure 3)
where users can assign due dates to their tabs. [C] Marking tabs as the
“Maybe/Someday” compresses them at the bottom [E] but are not completely
out of sight with one random tab showing. [D] Users can also assign color
coded priorities, which sorts their tasks within the sections. [F] Users can
open a tab bundle back into open tabs (independent to prioritization).

or a new project. On creation, the system automatically generates
a title suggestion for the tab bundle so it is easier to recognize in
the future (e.g., Hotels in Barcelona), and it can be edited by the
users. After saving, users could use the close selected tabs button to
close the set of tabs (Figure 1 E). Creating tab bundles in Tabs.do
enables users pause and resume progress at the task level. To resume
a previously closed task, users can reopen tabs under a bundle using
button that shows up on hover (Figure 4 F), either in the current
browser window or in a newly created browser window. Tabs.do
automatically restores their scroll positions so users can more easily
resume their progress.

One key challenge here is the cost of sifting through open tabs
to group all relevant tabs and naming them afterward, especially
for users who keep a large number of tabs opened. To lower the
interaction and cognitive costs of this process, Tabs.do uses machine
learning to make tab grouping suggestions in the Open Tabs pane
by showing a green border around the suggested name with a set
of tabs (Figure 1 D). Users can save a suggested tab group using its
title as the handle for dragging and dropping into the Project view
(Figure 2 and Figure 1 C). Alternatively, before dragging, they can

6



Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

click on the title to select tabs in the bundle suggestion which allows
users further select or deselect tabs to fix any mistakes made by the
machine learning model. The automatic task grouping lowers the
interaction costs of creating tasks as well as giving users a better
overview of their open tabs even before saving them (Figure 1 B).

To generate the task grouping predictions, we collected browsing
history from four authors and labeled them to train a neural network
model that can make predictions about which tabs belong to the
same tasks. We used TensorFlowJS as our machine learning library
[48], which allowed us to distribute the trained model with the
extension to make task predictions inside users’ browsers. This
design has the benefit of allowing Tabs.do to make predictions about
users’ open tabs without having to transmit to a remote server their
browsing history which may contain sensitive personal information.
Detailed description of this dataset, the task prediction model, and
its accuracy is described in Section 4.6.

4.4 [D2] Task Mental Models
While tabs are typically instantiated as a linear, temporally ordered
list, users’ task structures are often more complex. In our example
user’s scenario above, a vacation to Spain had several subtasks in-
cluding researching places to stay and places to eat, in both Madrid
and Barcelona (Figure 1 C). To support this task structure, tab bun-
dles can be nested within other tab bundles by dragging and drop-
ping them (Figure 2), acting as subtasks that can be expanded and
collapsed and given different priority levels, notes, or other task
functions. Nesting can be done to arbitrary levels of depth; to ad-
dress issues with real-estate and visual clutter at high levels of depth
the system provides a “focus” button which fills the view at the se-
lected level of depth with a breadcrumb allowing them to exit the
focused view.

Another challenge with task structure is supporting different types
of projects and projects at different stages of progress. One common
task type involves the long term collection, organization, and re-
access of content, such as collecting content relevant to a field of
scientific study, a kitchen remodel, a design mood board, a course
being taught, or a term project for a course. To support such tasks,
Tabs.do allows users to define tab bundles as long term projects,
which have a privileged position in the Main Menu (Figure 1 A).
Such projects are a familiar metaphor and correspond to the use
of workspaces in the Workona or Toby tab manager, or to projects
in to-do list tools such as Todoist. Unlike in such tools, we aim to
address the challenge that even the number of long term projects
can grow unwieldy and can go in and out of relevance over time;
to support this we enable users to pin projects to the top of the list,
similar to pinning messages in an email client. Although potentially
a mixed metaphor, we found this to work well in practice.

However, the larger challenge in supporting various task structures
are the many tasks in the long tail that are short term, ephemeral,
or in the early stages, and which often outnumber the set of long
term projects [8, 13, 29]. Users find projects and workspaces too
heavy for such tasks [13], requiring too much effort to create and,
more importantly, to get rid of or refactor; as well as “polluting”
their important long term projects with a large number of short

term or less developed tasks. To address these tasks we introduce
a holding tank which acts as the default view for participants’ tab
bundles. The holding tank aims to make it easy for users to throw
in tab bundles, single tabs, or even manual to-dos with no tabs
attached without spending the cognitive effort to figure out how
to structure and organize them and without polluting their curated
project information space. Such tasks can act as reminders for the
user to come back to them; can be easily removed by changing
their status to “completed”, deleting them, or simply ignoring them
as they drop below the fold; and can be refactored into larger tab
bundles by dragging and dropping them.

Beyond creating structures, Tabs.do also provides two mechanisms
for keeping track of users’ progress on their individual tabs. Firstly,
users can save tabs into Tabs.do when they are reading from web-
pages in their open tabs without switching into the main interface
of Tabs.do. To do so, users can click on the extension button to see
the Popup view of Tabs.do (Figure 3), allowing them to save the
current tab and set detailed attributes for it, such as priority and
due date (Figure 3 D). To help user maintain task context, the Popup
view saves tabs into the most recently accessed project from the
same browser window (Figure 3), but users can also select a different
project or create a new project (which changes the project context
for the browser window). In the Popup view, users can also change
the title of the tab and take notes to externalize useful information
they gathered from the current page and use Tabs.do as the external
memory for their task. Whenever users open or switch to an open
tab that was previously saved, a “saved” badge appears on the ex-
tension button. Users can open the Popup view to access previously
saved notes to remind them of their progress, and accumulate more
information by editing the notes field in the Popup view.

Secondly, Tabs.do proactively estimates the reading progress of each
tab to help users remember the level of progress they had made
(Figure 1 F “21%”). To do so, Tabs.do tracks the scroll position and
focus state of each tab using the scroll, blur, and focus JavaScript
events. Combined with the tab’s viewport height, Tabs.do gener-
ates a heat map in the background of how many seconds different
regions on the webpage were in the viewport while the tab was
in focus. Finally, Tabs.do generates a reading progress estimation
based on the heat map assuming users process 100 vertical pixels per
second. While there may be other more sophisticated approaches
for progress estimation, such as analyzing page content [25], this
simple heuristic was straightforward to implement, required mini-
mal computing resources at runtime, and worked reasonably well
during our own testing. This estimation is calculated locally on all
open tabs, but only synchronized with the backend database for
tabs that the user had saved to Tabs.do. This is so we only obtain
information for tabs that users had explicitly saved into our system
to avoid tracking private information.

4.5 [D3] Prioritizing
One issue with the current browser tab design is that it does not
reflect users varying task types and priorities. More specifically, tabs
represent frequently visited references, important but unfinished
tasks, or casual readings picked up from social media. However,

7



UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

besides favicons, tabs have the same visual saliency (i.e., tab-width),
making it difficult for users to prioritize their tasks and focus on
the task at hand [13]. Tabs.do addresses this by providing four
prioritization mechanisms that can be flexibly combined to address
different user needs (Figure 4):

Status-based: Tabs.do allows users to categorize their tabs into five
general statuses (Figure 4 A) indicated by the leading icon of each
saved tab: to-do (circle icon), to-read (book icon), reference (book-
mark icon), completed (check icon), and deleted (trash icon). Saved
tabs are automatically sorted under collapsible sections based on
their statuses. References are sorted at the top for quick access,
followed by to-do, to-read, completed, and deleted. The completed
sections are collapsed by default so that they do not distract users
from their primary tasks (Figure 4 E), and deleted items are moved
into a global Trash Can view accessible from the menu on the left
(Figure 1 A).

Priority-based: Users can prioritize their tabs by assigning priority 1
to priority 3 (Figure 4 D), which changes the color of their status
icon from gray to red, yellow, and blue, respectively. The priorities
are used as a secondary sort key; within each status section, priority
1 tabs are sorted to the top of the section, followed by priority 2,
priority 3, and default priority (unassigned).

Schedule-based: An alternativeway to prioritize tabs saved in Tabs.do
is to assign a due date to them. Tabs with a due date assigned to
them have a calendar icon under their title, followed by the due date.
Scheduling a tab does not change its order, but puts it into a global
scheduling view accessible from the menu on the left side.

Someday/Maybe: Prior studies in both general task management and
browser tab management have identified that some users tend to
keep low-priority tasks or tabs that they do not expect to ever com-
plete [6, 13]. To prevent low priority tasks creating clutter in users’
workspaces, Tabs.do allows users to mark tasks as Someday/Maybe
which moves them to the bottom of their project view (Figure 4 E).
Similar to completed tasks, Someday tasks are collapsed by default
to prevent clutter. One challenge here is that users do not want their
tasks out of sight (e.g., such as if saved as bookmarks) to avoid the
“black-hole” effect in which when tasks become out of sight, the
chances of completing them are significantly reduced [13]. For this,
Tabs.do encourages users to mark their tasks as Someday/Maybe by
showing a random low-priority item every time users open their
project so that they are not entirely out of sight (Figure 4 E), yet
also do not clutter users’ workspaces.

While we provided four mechanisms for prioritizing tasks in Tabs.do,
we do not expect users to utilize all four mechanisms. Instead, our
goal was to provide prioritization mechanisms flexible enough to
accommodate different users, as prior work in general task manage-
ment has pointed to users having varying strategies when prioritiz-
ing their tasks [30].

4.6 Automatic Task Bundle Suggestions
To lower the user costs of adopting the system, Tabs.do provides
tab grouping suggestions to make it easier for users to save tab
bundles into the system. Driving this feature is a deep learning

model that segments browsing history into sessions containing
page-loads supporting the same tasks. While page-loads are not
equivalent to tabs (i.e., a user could load multiple pages over time
in the same tab), this approach allowed us to more easily collect
training data using the Browser Extensions History APIs.3

We collected a small set of labels to train and test our model where
four research team members (a designer, a product manager, and
two researchers) provided their recent browsing history resulting
in a total of 2,278 page-loads. The first two authors went through
each page load in their history to identify whether it was either
the beginning of a new task session or not. To ensure labeling
consistency, the first two authors first labeled 10.9% of the data
independently and compared their labels. The two sets of labels had
a high agreement level (Cohen’s k = 0.901, p<0.00001, N=248), so they
proceeded to label the rest of the dataset without duplication. After
labeling all 2,278 page-loads, 23.8% were labeled as the beginning
of a new task session. We used the labeled dataset to train a simple
feed-forward network with three hidden layers of 32, 64, 128 nodes,
respectively, and used ReLu6 as the activation function [36]. We
used the below six features to make predictions about whether a
page-load in history is the beginning of a new task session or not.

(1) Title similarity based on Universal Sentence Embedding vectors
[12] between the current and previous page load

(2) Normalized Levenstein distance between the URLs of current
and previous page load

(3) Normalized Levenstein distance between the domains of current
and previous page load

(4) Whether the current page load was a Google search

(5) Whether the previous page-load was a Google search

(6) The number of times this URL was visited in the past

(7) The number of times URL was entered in the address bar

(8) Seconds between the current and the previous page load

These included features based on semantic similarity between the
page load and its previous page load (features 1 through 5) and
behavioral features based on users’ past interactions with the web-
page (features 6 through 8). Features 1 to 3 were designed to capture
task topic changes by measuring the semantic similarity between
titles, URLs, and domain names [12]. Features 4 and 5 were based
on the intuition that many online tasks begin with a web search to
fulfill some information needs. Features 6 and 7 were based on the
intuition that frequently visited portal pages, such as Google Drive,
are often used as task launchers. Finally, feature 8 was a feature
commonly used by search engines for identifying new search topics
[35]. At runtime, the model makes predictions on users’ browsing
history that covers their open tabs. We then extract query terms
from any Google search results pages to use as the suggested bundle
name, and if there were no Google search results pages within the

3https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
history

8

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/history
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/history


Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

suggested tab bundle, we use the title of the first tab within that
bundle.

4.6.1 Prediction Accuracy. We randomly sampled 80% of labeled
data for training, 10% for validation to prevent over-fitting, and
10% for testing model accuracy. The complete model trained on all
eight features had an overall labeling accuracy of 92.1% (precision:
0.86; recall: 0.83; F1: 0.84 for the start-of-task label). We further
compared the labeling accuracy for using only semantic features
versus only behavioral data. Results showed that the model trained
on semantic features (1 through 5) had a labeling accuracy of 76.3%,
and the model trained on behavioral features (6 through 8) had a
labeling accuracy of 86.4%. This result suggests that both semantic
and behavioral features contributed to the higher accuracy of the
model trained on all features. To reduce model complexity and
improve runtime efficiency, we iterated through different feature
combinations to see if we can use only a subset of features and
achieve similar performance to the complete model. In the end,
we used feature 1, 2, 3, 4, and 8 to generate the model we used
in the extension, which had an overall labeling accuracy of 90.8%
(precision: 0.84; recall: 0.79; F1: 0.81 for the start-of-task label).

We acknowledge that this preliminary result was limited by the size
of our dataset, and the accuracy of the model in a field deployment
will likely be lower than on the test set due to behavioral and task
topics differences between individuals. To address this, the Open
Tabs pane (Figure 2 A) allows users to recover from the model’s
mistakes by first clicking on a bundle’s title to select all tabs in it,
and then unselect tabs that do not belong in the same task, or select
additional tabs to include them. While more sophisticated models
with larger training data could further improve accuracy, in this
current work, we focused on examining the effects of providing
automatic task bundling suggestions on user experience holistically
by conducting a field deployment study of Tabs.do.

4.7 Implementation Notes
In order to produce a research prototype that is robust enough for a
field deployment study, we spent eight months developing Tabs.do
as a browser extension while the research team used the extension
ourselves for the last four months to identify bugs and usability
issues. Admittedly, modifying the browser program would have
allowed us to explore the design space of changing existing tab
interfaces, but we think it is a reasonable trade-off for the signifi-
cantly lowered development effort required for browser extensions
and is also sufficient to test our task-centric approach for managing
browser tabs.

Tabs.do was implemented in approximately 13,000 lines of Type-
Script and used the ReactJS library and the Bulma CSS framework for
building UI components. Firestore was used for backend functions,
database, and user authentication, which allowed our participants
to access their tabs across devices. For privacy concerns, Tensor-
FlowJS was used to drive the task bundle prediction feature [48],
which allowed Tabs.do to make tab grouping predictions locally on
participants’ computers without sending their open tab information
to a backend server. Tabs.do was implemented as a cross-platform
browser extension using the now standardizedWeb Extensions APIs,

but we only recruited participants who used Google Chrome andMi-
crosoft Edge as their primary browsers during the field deployment
study to minimize testing efforts during development.

5 FIELD DEPLOYMENT STUDY
To understand how our task-centric approach can benefit users and
to evaluate Tabs.do, we conducted a field deployment with partici-
pants performing their everyday tasks in the wild. Ten participants
were recruited by posting to authors’ social media feeds and online
forums (mean age: 29.70; SD=8.97; 6 male, 3 female, 1 non-binary;
4 students, 3 software engineers, 1 faculty, 1 account manager, 1
entrepreneur). The posts were brief and asked for participants who
have ever “felt overwhelmed by their browser tabs.” The posts also
contained a link to an online screener survey to recruit participants
who used Chrome or Edge as their primary browsers which were the
two browsers that we tested during development. Each participant
was interviewed remotely before using Tabs.do and after using it via
a video conferencing service that supported screen sharing. The pre-
interviews lasted around 20 minutes which covered collecting their
consent and demographic information, a brief walk-through of the
interface, and installing the extension on their personal computers.
We then scheduled each participant for a 30 minute post-interview
approximately one week after installation, determined by their avail-
ability. During the post-interviews, participants shared their screen
and performed a retrospective walk-through of their usage of the
system. All 10 participants completed the study and were each com-
pensated a 50 USD Amazon gift card for their time. The interviews
were recorded (both audio and video) and transcribed for an open
coding analysis to capture rich qualitative insights grounded in data
[9, 17]. The first author went through the 5 hours of recordings
and transcriptions in three passes to iteratively highlight interest-
ing quotes, generating summaries and potential categories until
clear high-level themes emerged. Throughout the iterations, inputs
from the third author who conducted the interviews were also in-
corporated. This study was approved by our institutional review
board.

5.1 Results
In general, participants responded favorably in the interviews about
their experience with Tabs.do during the week-long study, using
Tabs.do to manage their tabs supporting both their personal and
professional tasks in the wild. Log data showed that participants
were actively engaged with the system during the week-long de-
ployment (Table 1). We examined the log data and found that 7 out
of the 10 participants continued to be actively engaged with Tabs.do
on a daily basis at the time of writing (or for more than 10 weeks
total). Considering participants still had to endure a few bugs in our
research prototype and were under no obligation nor rewards for
the continued usage after the study had concluded, we see this as an
encouraging indication that our task-centric approach continued to
provide value to our participants. Below we list the most common
themes from coding the interviews to provide in-depth understand-
ings of how participants interacted with Tabs.do during the field
deployment study.

9



UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

Action Count P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 M SD

Se
ss
io
n New Tab Page 58 11 21 15 28 11 22 28 11 3 20.8 15.4

Popup View 19 4 39 4 7 3 6 4 14 11 11.1 11.1
Total 77 15 60 19 35 14 28 32 25 14 31.9 21.1
Create Project 11 1 5 6 4 4 2 1 4 2 4.0 3.0

Ta
sk

Create Manually 10 5 8 10 10 8 4 8 8 2 7.3 2.8
Save Open Tabs 63 19 50 70 49 37 11 47 78 11 43.5 23.8
Total 73 24 58 80 59 45 15 55 86 13 50.8 26.2
Nest Tasks 65 33 36 48 75 44 8 49 86 10 45.4 25.4
Edit Notes 7 7 2 0 12 7 7 2 0 12 5.6 4.5

R
eo

pe
n Individual Tabs 42 2 7 4 3 6 14 13 6 1 9.8 12.1

From Bundles 25 13 12 0 12 7 2 5 95 4 17.5 28.2
Total 67 15 19 4 15 13 16 18 101 5 27.3 31.3

Pr
io
ri
ty

Set Status 10 1 27 30 11 5 1 11 1 3 10 10.6
Set Priority 1 3 1 3 12 5 0 4 0 5 3.4 3.6
Set Due Date 1 1 2 8 31 3 4 0 0 0 5 9.5
Set Maybe/Someday 1 2 0 1 2 3 2 12 0 2 2.5 3.5
Total 13 7 30 42 56 16 7 27 1 10 20.9 17.6

Total Usage in Minutes 49.6 13.1 31.2 43.6 51.4 24.3 21.5 20.7 27.2 16.0 29.9 13.8
Table 1. Behavioral log data from participants in the field deployment study. Session: The number of times participants opened and interacted with Tabs.do,
either from the new tab page (Figure 1) or the popup view (Figure 3). Tasks: The number of times participants created a manual task or saved an open tab.
Nest Tasks: the number of times a task was nested under another; for example, if a bundle with 5 tabs were saved, it counts as saving and nesting 5 tabs.
Reopen: number of tabs opened from Tabs.do either by clicking on the title of a tab or using the reopen button on a bundle (Figure 4 E). For example, if a
bundle with 5 tabs were reopened, it counts as 5 openings.

5.1.1 [D1] Task-Centric Context-Switching. Tabs.do enabled
users to manage their attention at the task-level by introducing our
basic primitive of tab bundles that groups sets of tabs supporting
the same task together. Once created, tab bundles allowed users to
“relaunch” a task by reopening tabs in the bundles. Log data showed
that our participants were actively using our tab bundle primitive.
For example, on average, each participants saved 50.8 tasks (SD=26.2)
to Tabs.do and nested them 45.5 times (SD=26.2). This included both
dragging a group of tabs from the Open Tab view (Figure 2) to
create a tab bundle, as well as using drag and drop to create bundles
from previously saved tabs. In the interviews, participants were
enthusiastic about the ability to create tab bundles, especially when
they first discovered the automatic bundle suggestions:

“Having subprojects [task bundles] and projects is really
helpful, because that’s kind of what my workflow looks like.
It’s like, I have these four tabs that are related to this new
post I’m writing and these [other] four tabs are related to
analytics, and like being able to organize them, I think that’s
a big benefit.” – P3

“I saw when it automatically grouped them before I even
did anything. So that was so helpful. I was able to just make
them into a task, like a big bundle... and then from there
just close them out completely and know that I could come
back to it. So that was really, really helpful.” – P6

Many participants also frequently reopened individual tabs from
Tabs.do, averaging 27.3 reopened tabs (Table 1). This suggests that
users consider reopening fromTabs.do to bemore efficient compared
to 1) keeping and switching to a set of tabs; or 2) re-tracing their

steps for opening them in the first place (such as using same query
on Google, as reported in [1, 52]). On average, we found more tabs
were opened from “relaunching” tasks using tab bundles (M=17.5;
SD=28.2) than from clicking on and opening individual tabs (M=9.8;
SD=12.1), although the difference was not significant under a paired
T-Test (t(9)=-1.965,p=0.08). Closer examination suggests a bimodal
distribution with some participants strongly preferring reopening
sets of tabs using bundles while others preferring opening individual
tabs. During the interviews, participants described how the ability
to reopen sets of tabs from bundles allowed them to context-switch
at the task level and remind them of all the subtasks they needed to
completed:

“I was able to kind of switch to another task, and then close
all those tabs [referring to the task she switched away from].
So starting again on a task I was working on is pretty easy...
To open them all at once, kind of also remind me of all the
steps I had to do.” – P1

“I work in batches, for example, in the morning, I come to
the inbox [a project]. At night, 10:30, I come back to this
[another project]. Somewhere between 5pm to 8pm, I go to
Learning [another project] and open Kindle or Blinkist or
Audible [referring to reopening tabs]. So according to what
time of the day it is, it directly corresponds to what project
I’m using. ” – P4

The ability to “relaunch” tasks was also commonly mentioned with
time-saving and lowered interaction costs when compared to not
using Tabs.do:

10



Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

“So per day, it’s probably saving me about anywhere from
30 to 45 minutes... just because that’s the time that I would
spend like searching through all of my assignments, and
then opening them up and then trying to find each of the
readings that I have to do separately and then open up in a
separate tab” – P6.

One significant challenge brought up by prior work on tab overload
is that users have trouble closing tabs because they serve several
task-centric functions, ranging from reminding to externalizing
their working memory, resulting in clutter that, ironically, reduces
the effectiveness of those task functions [13]. We instead found our
participants’ expressing confidence closing tabs that they originally
felt strongly attached to as a result of using Tabs.do, suggesting
that our task-centric approach can address some of the tab issues
brought up in prior work [13].

“So one big thing is I used to have two windows open all
day. One with personal stuff, and one with work stuff. Now
I don’t have the personal one open anymore. I basically used
the tab manager to completely manage personal stuff that I
wanted to get back to... So it prevented me from having two
windows opening Chrome, which was the biggest gain; I
didn’t do that this whole week since I started using Tabs.do.”
– P3

“Probably being able to close a bunch of tabs I had open for,
like, days. Just because I didn’t want to lose those tabs.” –
P1

5.1.2 [D2] TaskMentalModels. Tabs.do supports capturing users’
task mental models by allowing them to create a hierarchy of tasks
with tab bundles as well as saving them into larger projects. Based on
log data, each participant created an average of 4.0 projects (SD=3.0)
and were actively creating nested tasks and subtasks from their tabs
(an average of 45.4 times; SD=25.4). In the interviews, participants
described how creating rich structures in Tabs.do allowed them to
work in a more organized manner when compared to using the
linear tab list of current browsers:

“I would say that before the Tab Manager [Tabs.do], I didn’t
really have any structure or sense of priority of my tabs.
They were just all just a mess. You know?” – P6

Interestingly, P6 further pointed to how the automatic tab grouping
feature allowed her to have more situational awareness with her
open tabs even before saving them, allowing her to find important
tasks that she should focus on and encouraged her to create task
bundles from the suggestions:

“The automatic grouping is everything to me. It kind of
puts me in the mindset that those things are related to each
other, and that they are somewhat important. Even now, I’m
getting the urge to group these [saving a tab group into the
holding tank], because this is all related to my JavaScript
homework... so it just kind of changed my relationship with
my tabs.” – P6

These suggested that Tabs.do has a low upfront cost for participants
to start benefiting from the system. Specifically, before saving tabs

into the system, the automatic task groupings can provide a better
overview that promotes situational awareness than the built-in
tab UI; and that even saving one tab bundle allowed participants
to immediately close them confidently, knowing that they could
relaunch their tabs when needed.

Participants also suggested potential features that would allow them
to further benefit from the task bundling feature. For example, P1
pointed to a tighter integration between her task structures and
the current tab by showing other tabs from the same tab bundle or
project in the Popup View:

“You could have the extension button be able to open up
related tabs [to the current tab] Like tabs that are in the
same project or subtask [tab bundle].” – P1

Tabs.do also allowed users to take notes in the Popup view (Figure 3)
as they read from their individual tabs to use as external memory.
Log data showed moderate use of the Popup view, accounting for
an average of 35% of users’ total sessions with Tabs.do, and 13% of
all tabs saved on average. However, participants only edited notes
5.6 times (SD=4.5). Prior work in general task management showed
that people tend to spent minimal effort when naming their tasks,
often with short description enough to provide salient cues. This
offers a potential explanation to the lower usage of note editing in
Tabs.do, suggesting participants primarily used Tabs.do as a task
management tool instead of a note-taking tool in its current state,
in contrast to the findings of other lightweight browser note-taking
tools [53].

5.1.3 [D3] Prioritization. Similar to prior work on general task
management [30], we also found that our participants used varying
strategies to prioritize their tasks in Tabs.do. Log data showed some
participants who rarely used the prioritization features such as
status, priority level, and due date (P2, P7, P9 in Table 1) as well
as participants who used them extensively (i.e., P3, P4, P5, P8 in
Table 1). There were also differences in how participants used the
prioritization features. For example, P3 and P4 mostly marked tabs
with statuses such as references and to-reads in order to pull them
out into different sections, whereas P5 most frequently scheduled
due dates for their tabs, and P8 used a combination of statuses and
marking tabs as Maybe/Someday to de-prioritize them.

Upon further investigation during the interviews, it turned out
that some participants who did not extensively use the built-in
prioritization features did end up prioritizing their tasks in Tabs.do,
but used more ad-hoc methods. Most commonly, participants used a
combination of open tabs, the Holding Tank, and Projects to triage
their tasks from lower priority to higher priority:

“One-off research things... I don’t think I would create a task
for it... Like looking for recipes, I opened a lot of tabs, but
then went through most of them and closed them within
like 30 seconds or a minute each. . . And then I have the
holding tank, which is like... just for one-off things that
didn’t belong in a project and were temporary, but longer
than I guess, a minute or five minutes.” - P1

11



UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

Other strategies included using a zero inbox strategy (described
in [58] as frequent filers for emails) in which users initially saved
most tabs using the on-page Popup View into the Holding Tank
(Figure 3), and frequently opened the main Tabs.do interface to
subsequently catalog them into projects (Figure 1). Similarly, some
used the Holding Tank to keep track of urgent tasks while creating
projects to store longer term tasks that had a lower priority (P6):

“Anything that was in the holding tank, I was either moving
to the reading list or to one of these projects that I made...
I consider the holding tank to be a place where you just
throw things [in] so you can organize them... I would feel
uncomfortable just leaving things hanging out in there.“–
P3

“Projects are, like, I’m gonna get around to watch all that
Anime [a project] and I’m gonna do this Art Challenge
[another project]. These [my projects] are presents for the
future... It’s not an immediate thing.Whereas up here [in the
Holding Tank], I’m like, okay, I have code [a task bundle]
due tomorrow.” - P6

One surprising finding was that few participants used scheduling
features of the system, despite their ubiquitous presence in to-do list
managers. When we asked about the lack of use of our scheduling
feature, participants noted that many of their lower importance
tasks do not have clear “deadlines.” For their more important tasks
in the browser, they pointed to their existing use of other calendar
services (i.e., Google Calendar and the calendar feature in Notion),
and instead suggested integration with third-party services as a
feature that would make scheduling more useful.

“It’s [scheduling due dates in Tabs.do] kind of useless to
me if I can’t see it in my Google Calendar. Any kind of
integration in the future would just be great. I kind of live
and die by my Google Calendar... If it’s not in my Google
Calendar, it’s not really gonna happen” - P6

In sum, we found participants used a wide range of different ap-
proaches to better prioritize their tasks in the browser. As a result,
participants said they were able to be more focused on the task at
hand and not be distracted by all other tasks that they had accumu-
lated.

“It’s made me more focused on whatever I’m working on
right now, and not distracted. – P1

“[The biggest benefit is] being focused on one tab at one
given time... [When] you have so many tabs, keep juggling
here and there, don’t know what to do. I like to keep life
simple, and I want to achieve what I’m doing at that point
in time. – P4

6 DISCUSSION AND FUTURE WORK
In this current work, we explored a task-centric approach to tabbed
browsing through a research prototype, Tabs.do. To enable this
approach we introduced the tab bundle primitive, and task manage-
ment affordances and views built on top of it. In an evaluation study
we found that participants using the system found the approach

useful, and identified changes in their behavior including decreased
tab and window clutter, the creation and use of rich, nested task
structures, and frequent context-switching among tasks.

Our results are promising in suggesting that a task-centric approach
may be profitably employed in tabbed browsing interfaces. In do-
ing so they are consistent with the beneficial use of activity-based
computing approaches in other contexts including general task
management [6], desktop applications and local files [2, 3, 54], and
email [7], and there are strong parallels between these contexts
and tabbed browsing (for example, the need for efficient context-
switching, reminding and avoiding “black-hole” effects, or collecting
lower-priority tasks that they do not expect to complete [6, 13]) that
suggest that users might indeed be treating their tabs as elements
of larger underlying tasks.

However, there are also interesting differences between tasks in the
browser and in other contexts such as email or file systems that
may suggest the need for different functionality going forward. One
fundamental difference is that many online tasks are inherently
exploratory [38], requiring users to proactively seek out and make
sense of many different pieces of information [43, 46], not all of
which are necessarily useful, and iteratively refine their goals [38].
To design for this fluid task structure, we introduced the concept
of tab bundles that allowed users to structure and restructure their
tasks to reflect their changing mental models when conducting tasks
in the browser, as well as the ability to prioritize and triage collected
information. However, further support for refactoring of tasks and
managing multiple promising branches is likely an important area
for future work.

Prior work in activity-based computing has pointed to benefits in
providing users access to their tasks across multiple devices and
applications [10, 18]. While the current implementation of Tabs.do
synchronizes in-browser tasks across computers, extending it to
support mobile devices and other desktop applications could be an
interesting directions for future work. For example, task bundles in
Tabs.do could potentially be used as basic building blocks to connect
applications and devices to build a more holistic system [4, 5]. Such
an approach could enable users to schedule and surface a to-read
task bundle on their mobile phones during an upcoming commute
or seamlessly bundle browser tabs with other local applications or
files supporting the same tasks.

Some participants pointed to the possibility of seeing the task bun-
dle suggestions directly on the browser interface without switching
to the new tab page to see them in the Open Tabs view. One practi-
cal challenge we faced when exploring new browser interactions
was that current Web Extension APIs have very limited support for
changing the interfaces and interactions of browser tabs. For exam-
ple, it would be difficult to change the structure or visual saliency of
tabs on native UI (such as colors or widths) to surface our tab bundle
suggestions with current browser APIs. Participants also pointed to
limitations imposed by current Web Extension APIs. For example,
Tabs.do used the “saved” badge on the extension icon to show that
it was previously saved, but Web Extension APIs lack mechanisms
for Tabs.do to further surface statuses or structures that the users
assigned to their tabs, such as due dates or projects.

12



Tabs.do: Task-Centric Browser Tab Management UIST ’21, October 10–14, 2021, Virtual Event, USA

While Tabs.do’s task-centric approach may provide a useful step for-
ward in helping people with their online tasks, it represents only one
piece of a richer tapestry of functionality that would be necessary to
support the complex learning, decision-making, and sensemaking
that people engage in on the internet. One way to think of this larger
ecosystem might include Tabs.do as a hub for creating, organizing
and managing tasks, but with additional functionality on each end.
The need for saving clips, snippets, and annotations when exploring
unfamiliar information is well documented [14, 32, 39, 49, 50], and
supporting the collection of such information in users’ tasks could be
an important extension for our approach. On the other end, as users
collect more information there is an increasing need for workspaces
that can help them structure, compare, synthesize, and take action
on it [15, 16, 19, 37, 42, 47]. Enabling Tabs.do to seamlessly pass in-
formation and synchronize with specialized workspaces for different
types of tasks could be a fruitful future direction.

Finally, a more prolonged deployment could reveal more insights
into Tabs.do’s longer-term costs and benefits, for example the scala-
bility of the system as users accumulate more tasks over time or once
any novelty effects have worn off. Early evidence on this question is
promising: we continued to monitor the usage logs and found that 7
out of the 10 participants voluntarily continued to use Tabs.do daily
for more than ten weeks after the study had concluded. A follow-up
discussion with five of them revealed that they saved more items
and continued to benefit from the system, and they emphasized
that being able to collapse and expand their bundles allowed for
efficient navigation within their projects. We are now building the
next version of Tabs.do for a larger and longer deployment as a
follow-up study.

7 CONCLUSION
This paper explored howusing a task-centric approach in the browser
can better support users in managing their browser tabs. Our de-
signs were motivated by the growing evidence that current browser
designs have become insufficient to support modern online tasks
for a significant segment of users [13]. We introduced Tabs.do, a
browser extension that instantiates this idea by allowing users to
save their browser tabs as “tab bundles” and use a set of task-centric
affordances to manage them. Using a deep learning model, Tabs.do
minimizes the cognitive and interaction costs of creating tab bun-
dles, lowering the adoption barrier to our task-centric approach.
Through a week-long field deployment study with 10 participants
using Tabs.do on their computers to manage their real-world tabs,
we found evidence that our task-centric approach allowed users to
manage their browser tabs more effectively. Specifically, Tabs.do
enabled participants to efficiently context-switch among tasks, re-
duce tab clutter, and create task structures that better reflected
their mental models. As online tasks become increasingly complex,
new interfaces and interactions that can bridge the divide between
tab management and task management in the browser may become
increasingly important. Tabs.do represents a first step towards bring-
ing task-centric approaches to browser tab management that have
stayed relatively static for the past 20 years to better support users
conducting complex online tasks today.

8 ACKNOWLEDGEMENT
This work was supported by the National Science Foundation (PFI-
1701005 and SHF-1814826), the Office of Naval Research, Google, and
the Carnegie Mellon University Center for Knowledge Acceleration.

REFERENCES
[1] Eytan Adar, Jaime Teevan, and Susan T Dumais. 2008. Large scale analysis of web

revisitation patterns. In Proceedings of the SIGCHI conference on Human Factors in
Computing Systems. 1197–1206.

[2] Anand Agarawala. 2006. Enriching the desktop metaphor with physics, piles and
the pen. In Masters Abstracts International, Vol. 45.

[3] Anand Agarawala and Ravin Balakrishnan. 2006. Keepin’it real: pushing the
desktop metaphor with physics, piles and the pen. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. 1283–1292.

[4] J. Bardram, Jonathan Bunde-Pedersen, and Mads Søgaard. 2006. Support for
activity-based computing in a personal computing operating system. In CHI.

[5] J. Bardram, S. Jeuris, Paolo Tell, Steven Houben, and Stephen Voida. 2019. Activity-
centric computing systems. Commun. ACM 62 (2019), 72 – 81.

[6] Victoria Bellotti, Brinda Dalal, Nathaniel Good, Peter Flynn, Daniel G Bobrow,
and Nicolas Ducheneaut. 2004. What a to-do: studies of task management towards
the design of a personal task list manager. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 735–742.

[7] Victoria Bellotti, Nicolas Ducheneaut, Mark Howard, and Ian Smith. 2003. Taking
email to task: the design and evaluation of a task management centered email tool.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
345–352.

[8] Michael Bernstein, Max Van Kleek, David Karger, and MC Schraefel. 2008. In-
formation scraps: How and why information eludes our personal information
management tools. ACM Transactions on Information Systems (TOIS) 26, 4 (2008),
1–46.

[9] Richard E Boyatzis. 1998. Transforming qualitative information: Thematic analysis
and code development. sage publications, inc, Thousand Oaks, California, United
States.

[10] Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven Houben, C.
Klokmose, and Nicolai Marquardt. 2019. Cross-Device Taxonomy: Survey, Op-
portunities and Challenges of Interactions Spanning Across Multiple Devices.
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(2019).

[11] Lara D Catledge and James E Pitkow. 1995. Characterizing Browsing Strategies
in the World-wide Web. Computer Networks and ISDN Systems 27, 6 (1995), 1065–
1073.

[12] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al. 2018.
Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[13] Joseph Chee Chang, Nathan Hahn, Yongsung Kim, Julina Coupland, Bradley
Breneisen, Hannah S Kim, John Hwong, and Aniket Kittur. 2021. When the Tab
Comes Due: Challenges in the Cost Structure of Browser Tab Usage. In Proceedings
of the 2021 SIGCHI conference on Human factors in computing systems.

[14] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2016. Supporting Mobile
Sensemaking Through Intentionally Uncertain Highlighting. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). ACM, New York, NY, USA, 61–68. https://doi.org/10.1145/2984511.
2984538

[15] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2020. Mesh: Scaffolding
Comparison Tables for Online Decision Making. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 391–405.
https://doi.org/10.1145/3379337.3415865

[16] Joseph Chee Chang, Nathan Hahn, Adam Perer, and Aniket Kittur. 2019. Search-
Lens: Composing and capturing complex user interests for exploratory search.
In Proceedings of the 24th International Conference on Intelligent User Interfaces.
ACM, New York, NY, USA, 498–509.

[17] Kathy Charmaz and Linda Liska Belgrave. 2007. Grounded Theory. Wiley Online
Library, Hoboken, New Jersey, United States.

[18] David Dearman and Jeffrey S. Pierce. 2008. It’s on my other computer!: computing
with multiple devices. In CHI.

[19] Mira Dontcheva, Steven M Drucker, David Salesin, and Michael F Cohen. 2007.
Relations, cards, and search templates: user-guided web data integration and
layout. In Proceedings of the 20th annual ACM symposium on User interface software
and technology. 61–70.

[20] Patrick Dubroy and Ravin Balakrishnan. 2010. A Study of Tabbed Browsing
Among Mozilla Firefox Users. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York,
NY, USA, 673–682. https://doi.org/10.1145/1753326.1753426

13

https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1145/3379337.3415865
https://doi.org/10.1145/1753326.1753426


UIST ’21, October 10–14, 2021, Virtual Event, USA Chang, Kim, Miller, Liu, Myers and Kittur

[21] Chrome Extension. 2020. OneTab. https://chrome.google.com/webstore/detail/
onetab/chphlpgkkbolifaimnlloiipkdnihall. Accessed: 2020-09-10.

[22] Chrome Extension. 2020. Workona. http://workona.com/. Accessed: 2020-09-15.
[23] Chrome Extension. 2021. SessionBuddy. https://chrome.google.com/webstore/

detail/session-buddy/edacconmaakjimmfgnblocblbcdcpbko. Accessed: 2021-01-
07.

[24] Chrome Extension. 2021. Toby. https://chrome.google.com/webstore/detail/toby-
for-chrome/hddnkoipeenegfoeaoibdmnaalmgkpip. Accessed: 2021-01-07.

[25] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. 2003. DOM-based
content extraction of HTML documents. In Proceedings of the 12th international
conference on World Wide Web. 207–214.

[26] Life Hacker. 2012. Master Your Browsers Tabs with These Tricks and Exten-
sions. http://lifehacker.com/5883299/master-your-browsers-tabs-with-these-
tricks-and-extensions. Accessed: 2017-09-10.

[27] Life Hacker. 2013. It’s Okay to Open More Than Nine Browser Tabs; Here’s How
to Easily Manage Them. http://lifehacker.com/5985462/its-okay-to-open-more-
than-nine-browser-tabs-you-just-need-to-manage-them-properly. Accessed:
2017-09-10.

[28] Life Hacker. 2013. Why You Should Never Have More Than Nine Browser Tabs
Open. http://lifehacker.com/5984149/why-you-should-never-have-more-than-
nine-browser-tabs-open. Accessed: 2017-09-10.

[29] Nathan Hahn, Joseph Chee Chang, and Aniket Kittur. 2018. Bento Browser:
Complex Mobile Search Without Tabs. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–12.

[30] Mona Haraty, Diane Tam, Shathel Haddad, Joanna McGrenere, and Charlotte
Tang. 2012. Individual differences in personal task management: a field study in
an academic setting. In Proceedings of Graphics Interface 2012. 35–44.

[31] D Austin Henderson Jr and Stuart Card. 1986. Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user interface.
ACM Transactions on Graphics (TOG) 5, 3 (1986), 211–243.

[32] Ken Hinckley, Xiaojun Bi, Michel Pahud, and Bill Buxton. 2012. Informal Infor-
mation Gathering Techniques for Active Reading. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’12). ACM, New York, NY,
USA, 1893–1896. https://doi.org/10.1145/2207676.2208327 event-place: Austin,
Texas, USA.

[33] Jeff Huang, Thomas Lin, and Ryen WWhite. 2012. no search result left behind:
branching behavior with browser tabs. In Proceedings of the Fifth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, ACM, new york, ny, usa,
203–212.

[34] Jeff Huang and Ryen W white. 2010. Parallel Browsing Behavior on the Web. In
Proceedings of the 21st ACM Conference on Hypertext and Hypermedia. ACM, ACM,
new york, ny, usa, 13–18.

[35] Rosie Jones and Kristina Lisa Klinkner. 2008. Beyond the Session Timeout: Auto-
matic Hierarchical Segmentation of Search Topics in Query Logs. In Proceedings
of the 17th ACM Conference on Information and Knowledge Management. ACM,
ACM, New York, NY, USA, 699–708.

[36] Alex Krizhevsky and Geoff Hinton. 2010. Convolutional deep belief networks on
cifar-10. Unpublished manuscript 40, 7 (2010), 1–9.

[37] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. ACM,
New York, NY, USA, 67–80.

[38] Gary Marchionini. 2006. Exploratory search: from finding to understanding.
Commun. ACM 49, 4 (2006), 41–46.

[39] Catherine C. Marshall and Sara Bly. 2005. Saving and Using Encountered In-
formation: Implications for Electronic Periodicals. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’05). ACM, New York, NY,
USA, 111–120. https://doi.org/10.1145/1054972.1054989 event-place: Portland,
Oregon, USA.

[40] Brian H Murray and Alvin Moore. 2000. Sizing the internet. White paper, Cyveil-
lance 3 (2000).

[41] Hacker News. 2018. Open tabs are cognitive spaces (rybakov.com). https://news.
ycombinator.com/item?id=16671957. Accessed: 2020-09-13.

[42] Sharoda A Paul and Meredith Ringel Morris. 2009. CoSense: enhancing sense-
making for collaborative web search. In Proceedings of the SIGCHI conference on
human factors in computing systems. 1771–1780.

[43] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological review
106, 4 (1999), 643.

[44] Reddit. 2013. I have a serious problem with browser tab hoard-
ing. https://www.reddit.com/r/declutter/comments/1jpw13/i_have_a_serious_
problem_with_browser_tab_hoarding/. Accessed: 2017-09-10.

[45] Reddit. 2016. I’m a digital hoarder. I opened chrome to find all my tabs gone. I feel
relieved. https://www.reddit.com/r/declutter/comments/4qkomc/im_a_digital_
hoarder_i_opened_chrome_to_find_all/. Accessed: 2017-09-10.

[46] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. 1993. The cost
structure of sensemaking. In Proceedings of the INTERACT’93 and CHI’93 conference
on Human factors in computing systems. 269–276.

[47] MC Schraefel, MaxWilson, Alistair Russell, and Daniel A Smith. 2006. mSpace: im-
proving information access to multimedia domains with multimodal exploratory
search. Commun. ACM 49, 4 (2006), 47–49.

[48] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping Yu,
Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, et al. 2019. Tensorflow.
js: Machine learning for the web and beyond. arXiv preprint arXiv:1901.05350
(2019).

[49] Craig S. Tashman and W. Keith Edwards. 2011. Active reading and its dis-
contents: the situations, problems and ideas of readers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). Asso-
ciation for Computing Machinery, New York, NY, USA, 2927–2936. https:
//doi.org/10.1145/1978942.1979376

[50] Craig S. Tashman and W. Keith Edwards. 2011. LiquidText: A Flexible, Multitouch
Environment to Support Active Reading. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY, USA,
3285–3294. https://doi.org/10.1145/1978942.1979430 event-place: Vancouver, BC,
Canada.

[51] Linda Tauscher and Saul Greenberg. 1997. How People Revisit Web Pages: Empir-
ical Findings and Implications for the Design of History Systems. International
Journal of Human-Computer Studies 47, 1 (1997), 97–137.

[52] Jaime Teevan, Christine Alvarado, Mark S Ackerman, and David R Karger. 2004.
The perfect search engine is not enough: a study of orienteering behavior in
directed search. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, New York, NY, USA, 415–422.

[53] MaxGVanKleek,Michael Bernstein, Katrina Panovich, Gregory GVargas, David R
Karger, and MC Schraefel. 2009. Note to self: examining personal information
keeping in a lightweight note-taking tool. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 1477–1480.

[54] Stephen Voida, Elizabeth D Mynatt, and W Keith Edwards. 2008. Re-framing the
desktop interface around the activities of knowledge work. In Proceedings of the
21st annual ACM symposium on User interface software and technology. 211–220.

[55] W3C, W3Counter. 2017. Web Browser Usage Trends.
https://www.w3counter.com/trends. Accessed: 2017-09-10.

[56] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and Matthias Mayer. 2006.
Off the Beaten Tracks: Exploring Three Aspects of Web Navigation. In Proceedings
of the 15th International Conference on World Wide Web. ACM, ACM, New York,
NY, USA, 133–142.

[57] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and Matthias Mayer. 2008.
Not Quite the Average: An Empirical Study of Web Use. ACM Transactions on the
Web (TWEB) 2, 1 (2008), 5.

[58] Steve Whittaker and Candace Sidner. 1996. Email Overload: Exploring Personal
Information Management of Email. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, ACM, 276–283.

14

http://workona.com/
https://chrome.google.com/webstore/ detail/ session-buddy/edacconmaakjimmfgnblocblbcdcpbko
https://chrome.google.com/webstore/ detail/ session-buddy/edacconmaakjimmfgnblocblbcdcpbko
https://chrome.google.com/webstore/detail/ toby-for-chrome/hddnkoipeenegfoeaoibdmnaalmgkpip
https://chrome.google.com/webstore/detail/ toby-for-chrome/hddnkoipeenegfoeaoibdmnaalmgkpip
http://lifehacker.com/5883299/master-your-browsers-tabs-with-these-tricks-and-extensions
http://lifehacker.com/5883299/master-your-browsers-tabs-with-these-tricks-and-extensions
http://lifehacker.com/5985462/its-okay-to-open-more-than-nine-browser-tabs-you-just-need-to-manage-them-properly
http://lifehacker.com/5985462/its-okay-to-open-more-than-nine-browser-tabs-you-just-need-to-manage-them-properly
http://lifehacker.com/5984149/why-you-should-never-have-more-than-nine-browser-tabs-open
http://lifehacker.com/5984149/why-you-should-never-have-more-than-nine-browser-tabs-open
https://doi.org/10.1145/2207676.2208327
https://doi.org/10.1145/1054972.1054989
https://news.ycombinator.com/item?id=16671957
https://news.ycombinator.com/item?id=16671957
https://www.reddit.com/r/declutter/comments/1jpw13/ i_have_a_serious_problem_with_browser_tab_hoarding/
https://www.reddit.com/r/declutter/comments/1jpw13/ i_have_a_serious_problem_with_browser_tab_hoarding/
https://www.reddit.com/r/declutter/comments/4qkomc/ im_a_digital_hoarder_i_opened_chrome_to_find_all/
https://www.reddit.com/r/declutter/comments/4qkomc/ im_a_digital_hoarder_i_opened_chrome_to_find_all/
https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1978942.1979430

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tabbed Web Browsing
	2.2 Task Management

	3 Design Goals and Motivations
	4 System Design
	4.1 Fundamental Primitives and Design Approach
	4.2 Example User Experience
	4.3 [D1] Task-Centric Context-Switching
	4.4 [D2] Task Mental Models
	4.5 [D3] Prioritizing
	4.6 Automatic Task Bundle Suggestions
	4.7 Implementation Notes

	5 Field Deployment Study
	5.1 Results

	6 Discussion and Future Work
	7 Conclusion
	8 acknowledgement
	References

