
Design Considerations and Implementation Notes on Revolt:
Collaborative Crowdsourcing with Synchronized Stages

Joseph Chee Chang
Carnegie Mellon University
Pittsburgh, Pennsilvania
josephcc@cs.cmu.edu

This article describe some of the design decisions and patterns,
implementations details, and interesting strategies we found use-
ful while implementing the Revolt collaborative crowdsourcing
system for labeling machine learning datasets. We hope these can
be helpful for people who are interested in developing real-time
collaborative crowdsourcing systems. Some of the implementa-
tion details described below are particular to the TurkServer li-
brary, but the design patterns and strategies should be general
enough for researchers using other libraries. For details about the
Revolt system, please refer to the CHI 2017 paper [1] available here:
http://joseph.nlpweb.org/blog/2017/05/06/CHI-revolt/

Joseph Chee Chang, Saleema Amershi, and Ece Kamar. 2017. Revolt: Collaborative
Crowdsourcing for Labeling Machine Learning Datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA,
3180-3191. DOI: http://dx.doi.org/10.1145/3025453.3026044

1 SYNCHRONIZED STAGES
Revolt uses a Synchronized Stages pattern for facilitating real-time
collaboration on crowdsourcing platform with three stages: Vote,
Explain, and Categorize. The system employs multiple small ad-hoc
teams of crowdworkers working in parallel on different parts of
the input dataset. Within each stage, crowdworkers make inde-
pendent judgments to be revealed to others in subsequent stages
for collaboration. Using this pattern, Revolt can still benefit from
the common crowdsourcing mechanisms of verification through
redundant independent judgments (within stages), but can also
capture and utilize the diverse crowd perspectives through collabo-
ration (across stages). To the best of our knowledge this is the first
crowd-based system that utilized this pattern.

As an running example, the scenario we set out to investigate
is when crowdworkers are assigning predefined labels to items
in a dataset for training machine learning models (e.g., labeling
images with "cat" or "not cat" labels). However, in many cases, the
labeling guidelines may not be comprehensive and leave rooms for
alternate interpretations for some items (e.g., should an image of
a tiger be labeled as "cat" or not, or how to judge if a web search
result is relevant enough, see the Revolt paper for more examples).
To address this problem, Revolt utilized crowd collaboration to find
concepts in the dataset that are unaware by the requesters. In the
first stage of the Revolt system, crowdworkers label a subset of
the images independently the same way traditional image labeling
tasks are done on crowdsourcing platforms. In the second stage we
compare and reveal their independent judgements to each other
in real-time when an item received different labels from different

Unpublished working draft.
Work done during an internship at Microsoft Research, Redmond.

crowdworkers. We then ask the crowdworkers to explain their
labeling choices and discuss with each other to generate a new label
(e.g., "tigers") for the ambiguous items. Afterwards, the requesters
can review these concepts discovered by the crowdworkers who
collectively reviewed the entire dataset, and freely assign items
associated with these concepts to one of the predefined labels (e.g.,
assigning all "tiger" items as "cat", and all "cartoon cat" items as
"not cat").

The independent nature of the first Vote stage is crucial for
capturing all ambiguous items. Since crowdworkers are typically
optimizing for generating an acceptable labels as quickly as possible,
if the judgements from other crowdworkers are visible during the
first stage, workers might be swayed to pick the label others have
already picked out, and converging on a single label even for items
that are ambiguous and open to debate. On the other hand, the
synchronized nature between the first and second stages is also
crucial to reduce the amount of work. By identifying the items that
received different labels in real-time, workers only need to work
on the small subset of ambiguous items in the following Explain
and Categorize stages.

2 AWARENESS
We made the decision of allowing the crowdworkers to be fully
aware of the collaborative nature of the tasks, and found it to be
beneficial. In general, crowdworkers who chose to accept our HIT
found collaboration to be enjoyable, citing "it was fun to work with
other people" and that they "discovered interesting things from
others" in the post-HIT survey. We’ve also received higher quality
data while workers are collaborating with each other. In the Explain
stage of Revolt, where crowdworkers are providing short expla-
nations for their labels on items that received different labels, we
received better explanations when the workers are aware that these
explanations will be shown to others. For example, explanations
that contained detail description of the items such as "this is a tiger,
which sometimes are referred to as big cats" instead of just "big cats
are cats".

With the Synchronized Stages pattern, it is very apparent to the
crowdworkers that there are other people working on the task with
them, since they have to wait for others in the lobby and between
synchronized stages. However, there are still some additional infor-
mation in each stage that we exposed (or chose not to expose) to
the workers that:

• Peer comparison: In the Vote stage, workers were informed
that others are labeling the same items, and that their labels
will be compared in the following stages. The idea is that
this can serve as a incentive for paying more attention and
providing quality work.

http://joseph.nlpweb.org/blog/2017/05/06/CHI-revolt/
http://dx.doi.org/10.1145/3025453.3026044


Notes on Revolt
Collaborative Crowdsourcing with Synchronized Stages

Joseph Chee Chang
Carnegie Mellon University

• Peer pressure: In the Explain stage, workers were informed
which items received conflicting labels, but we did not expose
the distribution of these labels. We found that exposing the
distribution will cause some of the workers to quickly agree
to the majority instead of providing their reason for picking
the different labels in the first place.

• Helping others: In the Explain stage, we asked the workers
to provide explanations that focus on describing the items to
help others understand their judgement, so they the crowd-
workers don’t get overly defensive about their judgements.

3 CONTROLLING DROPOUTS
In traditional crowdsourcing settings, workers returning a HIT
without completing the tasks does not cuase serious harm to the
system. The data are discarded by the Mturk platform, and pay-
ments are not made. However, in the collaborative settings, if one
worker in the group left before the tasks is completed, the collected
data would be generated less collaboration. Further, in our opin-
ion the workers should not be punished by other crowdworkers
leaving early, and they have also expressed their disappointments
in our surveys when they were unable to finished the task due
to other workers leaving early. Therefore, in the Revolt system if
some crowdworkers decided to return their HITs, the system will
still allow the remaining workers to continue with their remaining
stages and receive full payments. Due to these reasons, controlling
dropout rate is crucial to both lowering cost and increasing the
diversity of the collected data for collaborative crowd systems em-
ploys small ad-hoc teams working in parallel. During development,
a lot of efforts was put into iterative design to figure out how to
lower the proportion of crowdworkers leaving early, and we have
successfully lowered the dropout rate of the system from around
50% to less than 5% using the following strategies:

• Length of stages: Intuitively, the longer your tasks are, the
higher the chance of some workers leaving before the task
ends. In addition, workers should receive the same amount of
work in the same stages to minimize the wait time between
the synchronized stages.

• Awareness of collaboration: In the task preview screen, make
clear the collaborative nature of the task, providing time
estimates while explaining how dropping out early may
effect other crowdworkers.

• Awareness of the tasks: In the task preview screen, provide
example tasks so crowdworkers knew what to expect if they
accepted the HIT. For example, some workers might be will-
ing to label cat images, but not news articles, and we do not
want them to only find out in the middle of the task and thus
returning the HIT.

• Progress and Notification: During the tasks, we gave clear
progress indicators which showed the amount of bonus
earned so far, and howmuch they can earn by completing the
remaining stages. When the system moved crowdworkers
to the subsequent stage synchronously, desktop and audio
notifications were sent to all workers so that if they can
come back to the browser tab and continue working on the
next stage.

• Payment Structure: Revolt consists of three stages, and we
pay 1USD for each stage. We designed each stage to be of
similar difficulty and work duration. The idea behind this
payment structure is that if workers are satisfied with the
workload and payment of each stage, they should be moti-
vated enough to continue and finish the next stage.

• Lobby: To form small ad-hoc groups, crowdworkers who
have already accepted the HIT still need to wait until there
are enough workers in the Lobby to start the experiment.
In our experience, many workers will rush to accept our
HITs soon after posting forming multiple ad-hoc teams of
three workers. However, subsequent workers may need to
wait for a short period of time in the lobby before enough
workers have arrived. One issue we had encountered is that
some workers may be idling when the experiment automat-
ically starts, causing them to timeout quickly in the first
stage. Therefore, instead of automatically starting new ex-
periments whenever there are enough workers in the lobby,
we implemented a ready button that expires every 3 min-
utes, and only started new experiments whenever there are
enough readied workers. The ready button is only activated
whenever there are enough workers in the lobby. This en-
sures whenever a new experiment starts, all the workers in
the experiment had pressed the ready button within the past
3 minutes. In addition, we also send each worker desktop
and audio notification whenever a new worker arrived at
the lobby, so that they do not have to be constantly check
the status of the lobby.

4 HIT POSTING STRATEGIES
4.1 HIT Duration
HIT duration should be set to longer than the estimated lobby wait
time plus the time to finish all stages and the exit survey, so that
workers have enough time to complete the task. On the other hand,
since many workers have the habit of accepting and queuing up
lots of HITs they deemed worth doing, if you set an overly long HIT
duration, you could end up with a lot of workers clogging up your
lobby and intentionally not starting the experiment. You also want
to make sure that you indicated how long the task will take in the
preview screen, so workers know that if they queue up your HITs
for too long after accepting them, they might not have enough time
to finish the tasks.

4.2 HIT List Ranking
Since many crowdworkers frequently check the HIT list for most
recently posted HITs, one way to increase your HITs’ exposure is
to post them in batches. For example, if you need 30 assignments,
you can post 10 at a time over 10 minutes, that way your HITs are
constantly in the first page of most recent HITs on mTurk. Another
posting trick is to add assignments whenever you have a few people
waiting in the lobby, that way you increase the chance of having
enough workers to start the experiment. It would probably be a
fun project to automatically learn the optimal posting strategy for
real-time collaborative crowdsourcing, but for the Revolt system
we basically post batches of assignments over a short period of time

DRAFT



Notes on Revolt
Collaborative Crowdsourcing with Synchronized Stages

Joseph Chee Chang
Carnegie Mellon University

and was able to recruit enough workers in a reasonable amount of
time for our tasks.

5 IMPLEMENTATION DETAILS
In TurkServer terminology, an Instance (or a world) consists of
three synchronized stages: 1) the "Lobby" where crowdworkers
wait for the experiment to start, 2) the "experiment" where a group
of crowdworkers collaborate to finish the task defined by the re-
quester, and 3) the "exit survey" where crowdworkers answers a
post-survey and submit the HIT independently. These three stages
are "synchronized" in that all workers must enter each stages to-
gether. For example, workers wait until there are enough people in
the lobby to start the experiment in a group, and finish the tasks in
the experiment stage together before they can move on to the exit
survey and submit the HITs.

To implement your own synchronized sub-stages during the
TurkServer you simply need to keep track of each worker’s progress
in each stages, and move all workers to the next stage when all
of them are done with the current stage. You might be tempted
to use the Meteor.users object provided by TurkServer to keep
track of user data, but there are security measures around the user
object to prevent syncing additional attributes across crowdworkers.
Simply create an additional ‘TurkServer.partitionedCollection‘ to
keep track of each workers progress.

For example, in the Revolt System there are three synchronized
stages: Vote, Explain, Categorize. All workers are initialized with
the "Vote "status which also inform their frontend code to render
the Vote stage interface. Workers who completed the Vote stage
are assigned the "Voted" status, which puts them in a waiting room
where they can keep track of the progress of other workers. And
finally, when all active workers are assigned the "Voted" status, the
backend sets the status of all workers "Explain", which moves all
workers to the next stage synchronously.

5.1 Asynchronized Survey Stage
In most TurkServer tutorial and example projects, all crowdwork-
ers in a "experiment" stage move on the "exit survey" stage syn-
chronously, i.e., the system waits until all the workers are done
with the task and calls ‘TurkServer .Instance .currentInstance()
.teardown()‘ which moves all the workers to the "exit survey" stage.
In our case, since we have multiple synchronized sub-stages during
the experiment stage (vote-explain-categorize), we did not require
workers to wait for each other to finish in the last stage before they
can move on to the exit survey and submit their HIT. In TurkServer,
this can be done by calling ‘TurkServer .Instance .currentInstance()
.sendUserToLobby(user._id)‘ for individual workers, since the built-
in Assigner sends workers who entered the lobby for a second time
to the exit survey. Note that you should check if all your workers in
an Instance has left the experiment stage and call ‘TurkServer .In-
stance .currentInstance() .teardown()‘ so that the system knows the
experiment has ended and the TurkServer backend admin interface
can render and time the experiments correctly.

5.2 Controlling Redundancy
• Task Redundancy: For diversity, if you do not want a single
worker to label all partitions of your dataset, you can limit the

number of HIT aworker can accept by setting the TurkServer
settings "turkserver.experiment.limit.batch" to the number
of HIT a single crowdworker can accept.

• Global Redundancy: If you have multiple conditions, and do
not want to use the same crowdworkers to be exposed to dif-
ferent conditions, you can assign seen workers with custom
mTurk qualifications, and reject those workers in your fu-
ture HIT postings. This is a general strategy commonly used
when developing crowd based systems for testing different
conditions.

REFERENCES
[1] Joseph Chee Chang, Saleema Amershi, and Ece Kamar. 2017. Revolt: Collaborative

Crowdsourcing for Labeling Machine Learning Datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA. https://doi.org/10.1145/3025453.3026044

DRAFT

https://doi.org/10.1145/3025453.3026044

	1 Synchronized Stages
	2 Awareness
	3 Controlling Dropouts
	4 HIT Posting Strategies
	4.1 HIT Duration
	4.2 HIT List Ranking

	5 Implementation Details
	5.1 Asynchronized Survey Stage
	5.2 Controlling Redundancy

	References

